A Comparison of Artificial Neural Networks Algorithms for Short Term Load Forecasting in Greek Intercontinental Power System

نویسندگان

  • G. J. TSEKOURAS
  • C. D. TSIREKIS
  • N. E. MASTORAKIS
چکیده

The objective of this paper is to compare the performance of different Artificial Neural Network (ANN) training algorithms regarding the prediction of the hourly load demand of the next day in intercontinental Greek power system. These techniques are: (a) stochastic training process and (b) batch process with (i) constant learning rate, (ii) decreasing functions of learning rate and momentum term, (iii) adaptive rules of learning rate and momentum term, (c) conjugate gradient algorithm with (i) Fletcher-Reeves equation, (ii) Fletcher-Reeves equation and Powell-Beale restart, (iii) Polak-Ribiere equation, (iv) PolakRibiere equation and Powell-Beale restart, (d) scaled conjugate gradient algorithm, (e) resilient algorithm, (f) quasi-Newton algorithm, (g) Levenberg-Marquardt algorithm. Three types of input variables are used as inputs: (a) historical loads, (b) weather related inputs, (c) hour and day indicators. The training set is consisted of the actual historical data from three past years of the Greek power system. For each ANN training algorithm a calibration process is conducted regarding the crucial parameters values, such as the number of neurons, etc. The performance of each algorithm is evaluated by the Mean Absolute Percentage Error (MAPE) between the experimental and estimated values of the hourly load demand of the next day for the evaluation set in order to specify the ANN with the smallest value. Finally the load demand for the next day of the test set (with the historical data of the current year) is estimated using the best ANN of each training algorithm, so that the verification of behaviour of ANN load prediction techniques should be demonstrated. Key-Words: artificial neural networks, short-term load forecasting, ANN training back-propagation algorithms

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

Neural Networks in Electric Load Forecasting:A Comprehensive Survey

Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...

متن کامل

Short-term and Medium-term Gas Demand Load Forecasting by Neural Networks

The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real  concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...

متن کامل

Short and Mid-Term Wind Power Plants Forecasting With ANN

In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...

متن کامل

Short and Mid-Term Wind Power Plants Forecasting With ANN

In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008